1. Factor
$$12x^2 - 5x - 3$$

2. Factor and solve
$$10x^2 + 39x + 14 = 0$$

$$(5x+2)(2x+7)=0$$

 $(5x+2)(2x+7)=0$
 $(5x+2)(2x+7)=0$

3. Solve for x:
$$3x + 2(90 - x) = (180 - x) - 40$$

$$3x+180-2x = 180-x-40$$

 $2x = -40$
 $x = -20$

$$4x + 5x = 180$$
$$X = 20^{\circ}$$

5. The ratio of the complement of an angle to its supplement is 2 to 7. Find the measure of two thirds of the angle.

$$\frac{90-x}{180-x} = \frac{2}{7} \quad 7(90-x) = 2(180-x)$$

$$630-7x = 360 - 2x$$

$$180-x$$
 7 $630-4x=360-2x$

$$270 = 5x$$
 $54^{\circ} = x$

the measure of the supplement.

$$\chi + \frac{2}{3}(180 - x) = 90 - x + 40$$

$$\frac{1}{3}x + 120 = 130 - x$$

$$4x = 10$$

 $x = 7.5^{\circ}$
(Supp=142.5°)

7. The supplement of the complement exceeds the sum of the angle and the complement by 10 degrees. Find the supplement of the complement.

$$180 - (90 - x) = x + 90 - x + 10$$

$$90 + x = 100$$

$$x = 10^{\circ}$$
Supp of Comp = 100°

8. Solve for x and y: $\begin{cases} -7x + 4y = -78 \\ 2x - 5y = 3 \end{cases}$

$$X = 14, y = 5$$

Use the following diagram to answer questions 9 and 10.

9. Given:
$$m\angle 4 = (14x + 23)^{\circ}$$

 $m\angle 3 = (21x + 72)^{\circ}$

$$35x+95=180$$

 $35x=85$
 $x=17/7$

$$m < l = 123^{\circ}$$

10. Given
$$m \angle 1 = (15x^2)^{\circ}$$

 $m \angle 3 = (2x + 8)^{\circ}$

Find:
$$m \angle 1$$

$$(5x-4)(3x+2)=0$$

 $x=4,-2$
 $5,-2$

$$m<1=9.6^{\circ}$$
 or $\frac{20^{\circ}}{3}$

Use the following diagram to answer questions 11 and 12.

$$\angle 1$$
 is comp. $\angle 2$

$$m \angle 1 = (6x - 7y + 16)^{\circ}$$

11. Given: $m \angle 2 = (5x + 12y + 17)^{\circ}$

$$m \angle 3 = (10y + 2x + 100)^{\circ}$$

$$m \angle 4 = (-5x - 2y + 133)^{\circ}$$

Find: $m \angle 1$

12. Do not use the givens from problem 11, but continue to use the diagram! Is $\angle 3 \cong \angle 4 = 90^{\circ}$ if

 $m \angle 3 = (10x^2)^\circ$ and $m \angle 4 = (25x + 15)^\circ$?

$$100^{2/12} + 25x + 15 =$$

$$10x^{2} + 25x + 15 = 180$$

 $10x^{2} + 25x - 165 = 6$

$$5(2x^2 + 5x - 33) = 0$$

$$x=\pm 3$$

$$(2x - 1) / 3(x - 3) = 3$$

13. Given:
$$\angle LCK \cong \angle MCD$$

$$m\angle LCD=68^{\circ}$$

$$m \angle LCM = (2x - y)^{\circ}$$

$$m \angle MCK = (x + y)^{\circ}$$

$$2x - 6y = -4$$

$$m \angle MCK = (x + y)$$

$$m\angle KCD = (5y-4)^{\circ}$$

$$2x - 6y = -4$$

$$3x + 5y = 72$$

$$x = \frac{103}{4}$$

 $y = \frac{39}{12}$
 $M < MCK = (142/7)$

 $\angle 1 \cong \angle 2$

14. Given: \overrightarrow{BG} bisects $\angle ABF$ \overrightarrow{CE} bisects $\angle FCD$

Prove: $\angle 3 \cong \angle 4$

bisects < ABF 2. CE bisects < FUD

A

3. LABC is a St. L LBCD is a St. C

4. LABF Supp<1 LFLD supp<2

5. 4 = <2 6. LABF= LFUD

7. 4324

1. Given

2. Given

3. Assumed from diagram

4. If two angles form a st. < , then they are supp 5. Given

6. If angles are ≅, then supps are ≅.

7. Je 2 = angles = 2, then quotients =.